Stroy-m.org

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотные насосы в системе отопления

Частотные насосы в системе отопления. Чем лучше обычных?

В современных системах отопления всё чаще используется насосы с частотным регулированием потока теплоносителя, или их еще называют — частотными насосами. Многие пользователи стараются выяснить преимущества данных устройств перед обычными насосами, поскольку частотные насосы стоят немного дороже, чем их классические аналоги. Чем оправдана повышенная стоимость циркуляционных насосов с частотным регулированием? Давайте разбираться.

Достоинства частотных насосов

Насосы с частотным регулированием имеют два основных преимущества перед обычными. Главными преимуществами насосов с частотным преобразованием можно считать:

  • Они могут работать в режимах, пропорциональных давлению теплоносителя;
  • Меньший расход электроэнергии, поскольку частотный работает более рациональней, чем классический.

На самом деле этих преимуществ гораздо больше, но об этом — ниже.

Работа в режиме пропорционально давлению очень важна в системах отопления, где расход теплоносителя регулируется терморегуляционными вентилями, которые установлены на радиаторах. Эти вентили еще называют термостатическими вентилями и с помощью данных устройств можно регулировать подачу теплоносителя в радиатор. Закрывая вентиль проток через радиатор уменьшается, тем самым увеличивая нагрузку на циркуляционный насос, поскольку пропускная способность отопительного контура немного снижается.

В чём разница между частотным насосом и классическим

Обычный циркуляционный насос в условиях повышенной нагрузки продолжает работать в стандартном режиме, тем самым создавая избыточное давление на выходе, что влечет за собой повышенный расход электроэнергии. Частотный насос, в условиях снижения пропускной способности отопительного контура, снижает обороты при помощи частотного преобразователя, тем самым препятствуя созданию избыточного давления на выходе насоса, что существенно экономит электроэнергию.

При использовании обычных циркуляционных насосов в системах отопления, наряду с термостатическими вентилями, возникают посторонние шумы, связанные с перепадом давления в системе отопления. Эти посторонние шумы наиболее отчетливо слышны в ночное время, и оказывают раздражающее действие во время отдыха. Закрытие вентилей создаёт паразитные гидравлические сопротивления, которые увеличивают нагрузку на циркуляционный насос обычного типа, что не лучшим образом сказывается на его долговечности.

Принцип работы частотного насоса

Использование циркуляционного насоса с частотным управлением может решить массу проблем. Он сам определяет для себя режимы работы, поскольку моментально адаптируется под перепады давления в отопительном контуре. Частотный преобразователь внутри управляет оборотами двигателя, и как только сопротивления в системе отопления начинает увеличиваться, с помощью частотного преобразователя, сразу же уменьшаются обороты двигателя. Это позволяет стабилизировать давление на выходе и поддерживать данное давление на заданном уровне. В таких условиях частотный насос работает в щадящем режиме, что положительного сказывается на сроке его службы, и не ведёт к неоправданному расходу электроэнергии.

С помощью частотного насоса достигаются идеальные параметры работы системы отопления, в которой применяются термостатические вентили. Также отсутствие перепадов давления положительно сказывается на сроке службы трубных соединений и фитингов, а также на состоянии самих труб и теплообменника. Также такие насосы имеют некоторые конструкционные особенности, которые отличают данные устройства от обычных циркуляционных насосов. Насосы с частотным преобразованием изготовлены с применением постоянных магнитов, что позволяет существенно снизить потребление электроэнергии.

Частотник можно сравнить с энергосберегающей лампой, которая хоть и дороже обычной, но приносит ощутимую экономию при длительном использовании. Насосы частотного типа также экономят бюджет пользователя, хоть и сам насос стоит немного дороже, чем его классический собрат. При использовании частотного насоса в системах отопления на долговременной основе, экономический эффект — очевиден. Частые перепады давления в отопительном контуре могут со временем вывести обычный циркуляционный насос из строя, а данный элемент системы отопления является одним из самых дорогостоящих. Частотный же насос работает в оптимальных условиях, и имеет вдвое больший срок эксплуатации.

Дополнительные возможности частотного насоса

Насосы с частотным преобразованием имеют специальный дисплей, на котором отображается информация об объёме перекачиваемого теплоносителя — в час. Также насосы данного типа имеют органы управления в виде кнопок, с помощью которых можно задавать вручную режимы работы насоса. Частотный насос, с помощью кнопок управления, можно настроить на обычный режим, что позволит использовать это устройство, как обычный нерегулируемый насос. Это делается по желанию пользователя, а также при необходимости установки частотного насоса в системах отопления, где не используется термостатические вентили. Режимы работы частотного насоса также отображаются на светодиодном дисплее.

Энергопотребление и нагрев

В условиях максимальной нагрузки циркуляционный насос частотного типа расходует не более 20 Вт электроэнергии. И всё это благодаря тому, что в данном насосе используются постоянные магниты. При минимальном снижении оборотов частотный насос расходует всего 12-13 Вт, в то время как обычный циркуляционный насос постоянно расходует около 50 Вт — в среднем.

В условиях снижения пропускной способности отопительного контура, в силу закрытия термостатических вентилей, обычный насос продолжает работать на штатных оборотах, пытаясь преодолеть сопротивление. На выходе насоса растет давление, и вместе с тем повышается нагрев самого насоса, что также негативно сказывается на сроке его эксплуатации. Циркуляционный насос с частотным регулированием не имеет таких недостатков, поскольку он подстраивается под сопротивление отопительной системы, и его двигатель работает в комфортных условиях без излишнего нагрева. Частотный насос рассчитан для работы десятилетиями.

Положительное воздействие на элементы отопительной системы

Также нивелирование частотным насосом перепадов давления в отопительном контуре благотворно сказывается на сроке службы расширительного бачка. Перепады давления заставляют резиновую мембрану, которая используется в расширительных бачках, сжиматься и растягиваться, что со временем приводит к выходу расширительного бачка из строя.

Отсутствие перепадов давления, которое гарантировано при использовании насоса с преобразователем, позволяет работать расширительному бачку практически в одном режиме, который не влечет за собой растягивание или сжимание резиновой мембраны. Всего лишь нужно чётко следить за давлением воздуха в расширительном бачке, и периодически подкачивать его. Это должен делать специалист, который обслуживает вашу систему отопления.

При использовании циркуляционного насоса с регулированием, гораздо дольше служат радиаторы. Это также связано напрямую с отсутствием перепадов давления в отопительном контуре, которые способствуют деформации радиаторов, что со временем приводит к появлению микротрещин, а затем и свищей.

Заключение

Циркуляционные насосы с частотным преобразованием завоевывают всё большую популярность, невзирая на немного большую стоимость, чем у обычных насосов. Преференций от такого оборудования гораздо больше и все затраты на покупку данного устройства с лихвой компенсируется — экономией электроэнергии и работой системы отопления в правильном режиме. Также использование такого оборудования несёт пользователю повышенный комфорт, поскольку работа системы отопления становится практически бесшумной.

Циркуляционный насос с частотным преобразованием не только задает правильные параметры функционирования отопительного контура, но и положительно отражается на работе отопительного котла. Отсутствие перепадов давления, в первую очередь, очень благотворно отражается на теплообменнике, избавляя его от постоянных деформаций, которые вызваны скачками давления в системе отопления. Такие насосы — это очень полезная инновация в отопительных системах и за этой инновацией — будущее.

Термостаты и автоматика для управления циркуляционным насосом отопления

Автономные системы отопления в частном доме могут быть открытыми и закрытыми, с гравитационной и принудительной циркуляцией теплоносителя. Оптимальными и более практичными считаются схемы закрытого типа с принудительным движением воды. Энергозависимые тепловые магистрали обеспечивают равномерность подачи теплоносителя во все приборы без снижения температуры нагрева воды. А вот чтобы схема работала бесперебойно, нужна автоматика для циркуляционного насоса отопления – что это и зачем, следует разобраться подробнее.

  • Схема и принципы работы тепловых насосов
  • Приборы автоматики для насосов
  • Особенности и назначение термостатов
  • Возможности и принцип работы бесперебойного блока питания
  • Характеристики реле включения и отключения насоса

Схема и принципы работы тепловых насосов

Конструктивно прибор представляет собой комплекс основных и вспомогательных элементов:

  1. Рабочее колесо или крыльчатка. Детали с лопастями, которые захватывают жидкость, направляют ее в приборы отопительной системы.
  2. Электрический двигатель. Элемент нужен для запуска оборудования в работу.
  3. Камера перекачивания. Отсек оснащается патрубками подачи теплоносителя и напора, которые присоединены к трубопроводам системы.
  4. Корпус. Служит для защиты прибора от порчи при механическом воздействии, может изготавливаться из чугуна или термостойкого пластика.
  5. Клеммы. Коробка с клеммами нужна для подключения агрегата к электрической сети, для получения питания для всех элементов и регулирующих деталей.
Читать еще:  Какой теплоноситель лучше использовать в системе отопления

Как работает насос: по патрубку подачи в перекачивающую камеру оборудования поступает теплоноситель, далее электромотор запускает работу крыльчатки, лопасти которой захватывают жидкость. После этого давление на теплоноситель повышается, он направляется в патрубок выпуска, который присоединен к трубопроводу магистрали.

Простая схема для насоса для отопления не требует особых умений при монтаже, также не будет проблем с выяснением причины остановки оборудования – нет питания, засорилась крыльчатка. Никаких дополнительных функциональных особенностей нагнетатель не несет, давление в системе не повышает, нужен только для обеспечения нормальной циркуляции жидкости в приборах.

Приборы автоматики для насосов

Комплекс включает несколько отдельных агрегатов – терморегулятор, реле, источник бесперебойного питания (ИБП). Оборудование требуется для поддержания бесперебойной работы тепловых насосов, а также определения режима нагрева теплоносителя, который транспортируется по магистрали.

Совет! Термостат для циркуляционного насоса отопления пригодится не только в автономной системе, но и централизованной (в квартирах). Устройство устанавливается на радиатор, служит для коррекции интенсивности транспортировки теплоносителя в радиаторе.

Особенности и назначение термостатов

Прибор предназначен для контроля нагрева теплоносителя и совмещает функции запорного вентиля и термоэлемента.

Принцип работы термодатчика:

  • считывание информации с температурного датчика, который нужен для определения режима нагрева;
  • сравнение показателей датчика с заранее установленными настройками нагрева, которые пользователь вводит в меню устройства, определяя температуру включения и отключения насоса;
  • осуществление запуска оборудования в работу или отключение насоса.

Основной момент в определении режима – гистерезис. Это интервал запаздывания показателя температуры при запуске и остановке прибора. Как только начинается процесс нагрева теплоносителя, гистерезис плюсуется к показателям температуры, определяющим запуск насоса в работу, а при остывании жидкости установленный гистерезис отнимается.

Задается гистерезис в ручном режиме, хозяин сам может установить интервал в 5 и более градусов. Например, в настройках режима есть заданный уровень температуры +50 С, гистерезис в +7 С, то сначала теплоноситель прогревается до +57 С, затем блок автоматики, осуществляющий управление циркуляционным насосом, запускает агрегат в работу. А вот для отключения нагнетателя нужно остывание теплоносителя до +43 С (50-7).

Совет! Гистерезис следует устанавливать от +5 С, чтобы прибор не запускался и отключался поминутно, поддерживая точность нагрева в 1 градус. При подборе насоса нужно смотреть установки гистерезиса в прошивке, удобнее работать +/-1 градус минимум и +/-10 градусов максимум.

Термодатчик устанавливается рядом с котлом, а если термостат выставляется с учетом данных температуры в комнате, то приборы регулировки котла должны предусматривать внесение изменений в температуру нагрева теплоносителя.

Возможности и принцип работы бесперебойного блока питания

Циркуляционный насос – энергозависимое оборудование, поэтому при отключении электропитания прибор работать не будет. Чтобы не остаться без тепла, хозяину нужно позаботиться о дополнительном источнике питания, которым может стать бесперебойник (ИБП) или генератор. Но генератор работает шумно, а вот блок обеспечения гарантирует тишину, при этом не уступает генераторам по функциональным возможностям. Главное – правильно подобрать источник обеспечения постоянного тока с учетом индивидуальных особенностей системы.

Можно обойтись без дополнительного источника энергии, если сформировать схему отопления с уклоном трубопроводов в сторону котла – так теплоноситель будет циркулировать самотеком, то есть при отключении электроэнергии дом не останется без тепла. Однако самотечные схемы не подходят для строений более 1 этажа и площадью более 25 м2. На высоту самотеком вода не поднимется, а пока теплоноситель самотеком дойдет до крайнего радиатора, температура снизится, в комнатах будет холодно. Поэтому без насоса, а соответственно, источника дополнительного питания в таких тепловых магистралях не обойтись.

Монтаж ИБП не доставляет сложностей, оборудование оснащено автоматической системой управления, аккумулятором для нагнетателя – такой комплекс обеспечивает энергией блок управления циркуляционным насосом отопления и другие элементы системы, работающие от электричества.

На заметку! В техническом паспорте бесперебойника прописывается объем аккумулятора, стандартное время работы прибора. При выборе ИБП в расчет принимается мощность циркуляционного насоса. А чтобы обеспечить энергией все элементы схемы, источник питания нужно брать с запасом.

Характеристики реле включения и отключения насоса

Реле запуска и отключения необходимо для поддержания работы системы в автоматическом режиме. Если в схему встроен насос циркуляционный с датчиком температуры, то при понижении уровня давления в магистрали реле включает прибор в работу, а при увеличении давления отключает.

На заметку! Реле включения насоса отопления пригодится в однотрубных и двухтрубных системах с раздачей ГВС. При окончании разбора воды давление поднимается, прибор отключается. Как только потребление теплоносителя возобновляется, нагнетатель снова запускается в работу.

Установленный таймер для насоса отопления позволяет неплохо сэкономить на топливе, продлить срок эксплуатации оборудования. Отключение насоса – снижение затрат на обслуживание, оплату электроэнергии и износа деталей. Как правило, производители агрегатов выпускают оборудование сразу с полным оснащением или дают точные рекомендации по подбору типов комплекса автоматического управления.

Что касается терморегуляторов, то их следует установить на все батареи, в том числе в квартире. В этом случае хозяин получает возможность задавать режим прогрева в каждой комнате, а владельцы автономных систем снижают затраты на топливо, энергоносители. Например, можно задать минимальный прогрев теплоносителя в дневное время, пока все на работе, запускать оборудование на полный прогрев только в вечерние и утренние часы. При таком режиме экономия достигает 35-40%.

Совет! Для нормальной работы радиаторов нужны термодатчики с тонкой шкалой настройки. Это значит, что деления должны быть не более 1-5 градусов, чтобы выставление режима нагрева теплоносителя было как можно более точным.

Термостат и автоматика управления циркуляционным насосом отопления

Выбирая вариант автономной схемы отопления для частного дома, хозяева чаще всего отдают предпочтение системам с принудительной циркуляцией. Прибор обеспечивает подачу теплоносителя нужной температуры ко всем приборам, ускоряет циркуляцию и справляется с подачей воды на верхние этажи дома. Рассмотрим, что такое автоматика для циркуляционного насоса отопления и зачем она нужна.

Схема и принцип работы циркуляционного насоса отопления

Тепловой насос – прибор, в котором есть основные узлы и вспомогательные элементы:

  • рабочее колесо (крыльчатка) обеспечивает транспортировку, перекачку жидкого носителя по трубам;
  • электрический двигатель запускает работу оборудования;
  • перекачивающая камера с патрубками подачи и напора, которые подключаются к магистральным трубопроводам;
  • корпус, защищающий прибор от механического воздействия;
  • клеммная коробка для подключений электрических органов и регулирующих приборов.

Принцип работы прост:

  1. В перекачивающую камеру поступает теплоноситель. Для этого есть впускной патрубок.
  2. Поток захватывается крыльчаткой, которая приводится в действие при запуске электродвигателя.
  3. За счет повышения давления теплоноситель отправляется в патрубок выпуска теплоносителя, присоединенный к магистрали.

Таким образом, схема для насоса для отопления становится предельно понятной, никаких сложностей с функционалом нет. Важно лишь выбрать вид оборудования, предназначенный для типа системы, установленной дома.

Автоматика для циркуляционного насоса

Общее определение включает несколько видов элементов – терморегулятор, реле, блок бесперебойного питания. Все эти узлы необходимы для регулировки температуры теплоносителя, подаваемого в магистраль, а также обеспечения бесперебойной работы насоса.

Стоит знать, что термостат для циркуляционного насоса может пригодиться и для квартиры – прибор подключается к радиатору и применяется для регулировки циркуляции теплоносителя через батарею. В некоторых квартирах такой вариант управления считается единственно возможным.

Читать еще:  Как убрать течь в системе отопления?

Термостат

Соединяет в себе функции вентиля и термоэлемента, контролирует температуру теплоносителя.

Как работает насос циркуляционный с датчиком температуры:

  1. Сначала определяется информация с температурного датчика, на котором выстроен весь принцип работы.
  2. Показатели сравниваются с выставленными настройками. Их нужно вводить в побочном меню устройства. Здесь различается сама температура включения насоса и гистерезис – так называется интервал запаздывания температуры при запуске и отключении оборудования.
  3. Как только пошел процесс нагревания, гистерезис добавляется к показателям температуры запуска насоса в работу, а при остывании теплоносителя гистерезис отнимается.

Получается, что если хозяин задает показатель температуры в +50 С, гистерезис в +5 С, то вода должна сначала прогреться до отметки в +55 С, чтобы блок управления циркуляционным насосом отопления запустил прибор в работу. А для выключения оборудования теплоноситель должен остыть до +45 С.

Прибор, дополненный гистерезисом, считается удобным в работе. Получается, что оборудование не будет постоянно включаться и выключаться для поддержания точности прогрева до одного градуса. Выбирая термостат, лучше отдать предпочтение минимальному показателю гистерезиса в прошивке +/- 1 градус, а максимальному +/- 10 градусов.

Важно! Если термостат для циркуляционного насоса отопления настраивается с учетом данных о внешней температуре в комнате, то и регулировка котла должна предусматривать изменения в температуре теплоносителя. Прибор монтировать рядом с котлом.

Бесперебойный блок питания

Управление циркуляционным насосом без подачи электропитания невозможно, поэтому обеспечение поступления постоянного тока – основная задача хозяина. Самый простой способ – установить блок бесперебойного питания (ИБП) или озаботиться генератором.

Многие хозяева стараются обойтись без дополнительного оборудования, формируя теплосистему с возможностью самотечной циркуляции теплоносителя. Это хороший выход, но при малейшем нарушении технологии выкладки трубопровода, система встанет. К тому же при оборудовании тепломагистрали в 2-х и более этажном доме самотечная схема может дать сбой, поэтому без насоса тут не обойтись.

При установке блока питания можно не беспокоиться за работу системы – оборудование оснащается автоматическим управлением, аккумулятором для теплового насоса. Комплекс поддержки обеспечит работу как самого насоса, так и других энергозависимых компонентов системы.

Важно лишь подобрать ИБП с нужным объемом аккумулятора, для чего следует читать информацию в техпаспорте. Как правило, производители указывают объем накопителя и возможную продолжительность работы приборов. Для выяснения точной информации следует брать в расчет мощность насоса для теплосистемы.

Реле включения и выключения

Устанавливается реле включения насоса отопления для поддержания работы прибора в автоматическом режиме. Принцип простой – при снижении уровня давления в тепломагистрали реле запустит прибор в работу, а при повышении показателя давления – отключит. Получается, что как только потребитель перестает разбирать воду, то уровень давления в системе поднимается до верхнего предела и таймер для насоса отопления отключает агрегат. Как только разбор воды запускается, давление в магистрали снижается до нижнего предельного уровня, насос снова включается в работу.

Как правило, производители оборудования, на котором не установлена автоматика, дают рекомендации по выбору комплектующих, но есть вариант купить тепловой насос с наличием всех дополнительных приборов. Для облегчения регулировки поступления теплоносителя в батареи, специалисты рекомендуют установить терморегуляторы на все радиаторы. Кроме поддержания комфортной температуры в доме, своевременная регулировка поможет снизить расходы на энергоносители.

Важно! Выбирая терморегуляторы следует оценивать шкалу настройки. Чем меньше градации делений (по 1-5 градусам), тем точнее будет выставлена температура жидкости, циркулирующей по магистрали.

MCX CP (PCM CP)

Описание

Модуль управления насосами MCX CP (новое обозначение PCM CP) – это микропроцессорный контроллер с предустановленным программным обеспечением, предназначенный для управления до трёх циркуляционных насосов в группе, обеспечивает поддержку циркуляции в системах горя-чего водоснабжения, отопления, холодоснабжения.

Модуль MCX CP разработан на базе контроллеров Danfoss серии MCX. Базовыми являются контроллер MCX06D и модуль расширения EXC06D.

Область применения:

  • Автоматизация ЦТП;
  • Автоматизация ИТП;

Состав оборудования:

Насосный модуль MCX CP обеспечивает управление системой в следующей комплектации (для трех насосов):

  • Три насоса (P1,P2,P3);
  • Два аналоговых датчика давления (4-20 мА) для контроля перепада (S2,S3);
  • Два дискретных датчиков от сухого пус-ка, для контроля перепада давления (S1,S4);
  • По одному дискретному датчику перепада давления на каждый насос (S5,S6,S7);

Функциональные возможности насосного модуля MCX CP:

Два алгоритма управления циркуляционными насосами.

Отображение необходимой информации на экране встроенного в контроллер дисплея;

Основной и дополнительный экраны.

  • Конфигурирование насосного модуля с помощью дисплея и кнопок;

Главное меню

  • Запуск модуля с помощью логического и автоматического стартов;
  • Автоматический, полуавтоматический и ручной режимы управления насосами;
  • Отслеживание обратной связи от двигателей насосов;
  • Возможность передачи управляющих сигналов на внешние устройства (сигналы о переключении насосов);
  • Автоматическое выравнивание ресурсов насосов;
  • Возможность сброса отработанного времени у каждого из насосов в группе;
  • Содержит возможность подключения и анализа достаточного количества датчиков для контроля за рабочим состоянием системы;
  • Мониторинг аварий насосов и общих для группы, состояний датчиков и т.п. Реакция системы в зависимости от уровня аварии;
  • Возможность принимать по одной аварии от каждого насоса. Например, при срабатывании теплового реле;
  • Индикация наличия аварий в системе и на каждом насосе;
  • Независимость от заводских настроек модуля расширения. Постоянный контроль нали-чия связи с контроллером;
  • Возможность обмена данными с ПК/коммуникационным контроллером.

Схемы управления циркуляционными насосами

Управление группой из двух насосов, когда одновременно работает только один из насосов, другой — резервный. Предусмотрена ротация насосов. Переключение между насосами осуществляется:

  • через заданный период работы насосов;
  • по аварии;
  • по часам наработки.

Модуль ЦН начинает свою работу с запуска насоса с наименьшим количеством часов наработки. Отработав заданный промежуток времени (период работы), насос останавливается. Теперь он – резервный. Через заданную временную паузу запускается другой насос.

Алгоритм управления группой из двух циркуляционных насосов.

Управление группой из трёх насосов, когда одновременно работают два насоса (50% и 50%), оставшийся из трёх — резервный. Предусмотрена ротация насосов. Переключение между насосами осуществляется:

  • через заданный период работы насосов;
  • по аварии;
  • по часам наработки.

Работа модуля ЦН начинается с запуска насоса с наименьшим количеством часов наработки. Через заданную временную паузу запускается следующий насос. Каждый из работающих насосов, отработав заданный промежуток времени (период работы), останавливается. Запускается резервный (неработающий) в настоящий момент насос.

Так, запустившийся первым и отработавший заданный промежуток времени (период работы), насос 1 останавливается. Теперь он – резервный. Через заданную временную паузу запускается насос 3. Насос 2 был запущен через паузу после запуска насоса 1, поэтому остановится позже насоса 1. Через заданную временную паузу после остановки насоса 2 запускается текущий резервный насос 1. Теперь насос 2 – резервный. Когда третий насос отработает заданный промежуток времени (период работы) и остановится, через заданную временную паузу запустится уже насос 2, а насос 3 станет резервным.

Алгоритм управления группой из трёх циркуляционных насосов.

Управление циркуляционным насосом

Управление циркуляционным насосом. Прежде чем приступить к тому, что и как он на самом деле контролирует, нужно сначала посмотреть, есть ли такой контроль в Вашей системе отопления и как его настроить. Если это возможно, вы можете отрегулировать мощность насоса отопления и автоматически.

В этой статье:
  • Управление циркуляционным насосом
  • Управление циркуляционным насосом по разности давлений
  • Управление циркуляционным насосом по разности температур

Управление циркуляционным насосом

Неуправляемый циркуляционный насос является простейшей версией циркуляционных насосов. Они всегда работают с одинаковой мощностью, независимо от того, присутствует ли потребность в обогреве помещений здания или нет. Этот насос не имеет управления. Такие насосы практически уже не применяются в современных системах отопления.

Другой вариант циркуляционного насоса – ступенчатое регулирование мощности (скорости) работы циркуляционного насоса. Как правило, три ступени мощности, например у циркуляционного насоса Wilo RS 26/6. Такие насосы очень распространены в системах отоплениях – регулирование производится или вручную настройкой скорости или при помощи внешнего управления. В этом случае автоматика котла или системы отопления дает команду на включение или отключение насоса анализируя температуру в помещении или наружного воздуха по отопительной кривой.

Читать еще:  Как починить циркуляционный насос для отопления?

Тем не менее, мы действительно можем говорить о реальном управлении циркуляционным насосом, если перед нами регулируемый высокоэффективный насос . Он реагирует на различные потребности в тепле в доме путем уменьшения или увеличения мощности.

Высокоэффективный насос отопления может сэкономить много энергии – его мощность макс. до 6 Вт, а мощность трехступенчатого насоса – до 60 Вт. По этой причине владельцам частных домов для оптимизации энергопотребления системы отопления желательно подумать о замене старого насоса.

Управление циркуляционным насосом по разности давлений

На рынке присутствует большое количество регулируемых циркуляционных насосов с управлением по разности давления теплоносителя в подаче и обратке – управление по перепаду давления. Для управления производится анализ перепада давления на входе и выходе из циркуляционного насоса.

Как работает этот вариант управления циркуляционным насосом? В зависимости от давления в контуре отопления, определяя перепад давления насос будет регулировать производительность. В основном применяется следующее:

  • Чем больше закрытых термостатов в системе отопления, и как следствие, теплоноситель не проходит через большинство радиаторов, тем сильнее давление в системе. Автоматика насоса будет снижать скорость насоса, снижая тем самым расход в системе.
  • Если большинство термостатов будут открыты для нагрева помещений, и теплоноситель циркулирует по большей части радиаторов, давление в системе падает. Регулируемый циркуляционный насос реагирует на это увеличением скорости и расхода теплоносителя для поддержания комфортной температуры.

Таким образом, циркуляционный насос может реагировать на внешние параметры – температуру в помещениях, и адаптировать свою производительность. Это снижает требования к автоматике системы отопления и делает управление более адаптивным и экономичным.

Управление циркуляционным насосом по разности температур

В качестве альтернативы, например, имеется управление циркуляционным насосом по разности температур между температурой подачи и температурой обратки. Температура подачи – это та температура, с которой теплоноситель поступает из котла, а температура обратки – та, с которой он возвращается из отопительного контура в котел.

Если разница температур низкая, это указывает на то, что производительность насоса в настоящее время слишком высока. Затем управление циркуляционным насосом снижает мощность насоса.

Схемы подключения Теплоаккумулятора

Схема подключения теплоаккумулятора зависит от теплового и гидравлического режима источника и потребителя тепла, а так же от количества источников и потребителей.

Схема с прямым подключением теплоаккумулятора к контуру источника и потребителя, применяется если:

  • Требования к качеству теплоносителя в контуре источника и потребителя тепла одинаковые.
  • Рабочее давление у потребителя тепла (на всех режимах) не превышает максимально допустимого давления для источника тепла и самого теплоаккумулятора.
  • Температура теплоносителя в теплоаккумуляторе на всех режимах, соответствует необходимой температуре для потребителя.

Данная схема используется в небольших системах отопления частных домов с количественным регулированием на отопительных приборах. При этом на выходе источника тепла, а соответственно и в теплоаккумуляторе, поддерживается постоянная температура.

Если тепловой режим потребителя предполагает качественное регулирование с различной температурой поступающего теплоносителя в зависимости от времени суток или температуры наружного воздуха, данную схему дополняют узлом смешения.

Схема подключения потребителя к теплоаккумулятору с узлом смешения, используется если:

  • Требования к качеству теплоносителя в контуре источника и потребителя тепла одинаковые.
  • Температура теплоносителя на выходе из источника тепла на каком либо из режимов превышает, температуру необходимую для потребителя.
  • Рабочее давление у потребителя тепла (на всех режимах) не превышает максимально допустимого давления для источника тепла и самого теплоаккумулятора.

Данная схема получила применение системах отопления с качественным регулированием при котором температура теплоносителя поступающего в систему отопления зависит от температуры наружного воздуха, времени суток, дня недели или от температуры в воздуха в контрольном помещении.

Трёхходовой клапан, установленный в контуре системы отопления, к горячему теплоносителю отбираемому из верхней части теплоаккумулятора подмешивает теплоноситель из обратного трубопровода, в пропорции необходимой для получения заданной температуры смеси подаваемой в систему отопления.

Возможность поддерживать максимально высокую температуру воды в теплоаккумуляторе является одним из преимуществ данной схемы, так как позволяет увеличить его аккумулирующую способность.

Если рабочее давление у потребителя тепла превышает рабочее давление для теплоаккумулятора или источника, применяют независимое подключение потребителя (через теплообменный аппарат).

Если рабочее давление в контуре источника тепла превышает допустимое давление для теплоаккумулятора или системы отопления, применяют схему с теплообменным аппаратом в контуре источника.

Схема подключения теплоаккумулятора со встроенным теплообменником, применяется если:

  • Рабочее давление в контуре источника тепла превышает допустимое давление для системы отопления.
  • Различные требования к качеству теплоносителя в контуре источника и потребителя тепла.

Если площадь поверхности теплообменных аппаратов встроенных в теплоаккумуляторы недостаточна для нагрева необходимого объёма воды за заданное время, применяют схемы с внешним теплообменником и загрузочным насосом.

Схема подключения теплоаккумулятора с внешним теплообменником и загрузочным насосом, применяется если.

  • Серийно встраиваемые теплообменные аппараты не обеспечивают нагрева бака за заданное время.
  • Давление теплоносителя в контуре источника тепла превышает допустимое давление для потребителя или теплоаккумулятора.
  • Различные требования к качеству теплоносителя в контуре потребителя и источника тепла.

Теплоаккумуляторы со встроенным баком, применяются для подключения систем горячего водоснабжения с непродолжительным, но высоким пиковым расходом воды.

Такие теплоаккумуляторы отличаются тем, что могут кратковременно, обеспечить высокую пиковую потребность в горячей воде, но после заполнения встроенного бака холодной водой её повторный нагрев займёт длительное время.

В системах с потребностью в высокой длительной мощности нагрева устанавливают теплоаккумуляторы со встроенным или внешним теплообменным аппаратом системы горячего водоснабжения.

Схема подключения теплоаккумулятора со встроенным теплообменником системы горячего водоснабжения, применяется при необходимости в высокой длительной мощности подогрева горячей воды.

Тепловые аккумуляторы со встроенным теплообменником системы ГВС обеспечивают высокую длительную мощность, но не могут покрыть пиковых нагрузок за её пределами.

Если заданная длительная мощность подогрева воды не обеспечивается серийно устанавливаемыми теплообменными аппаратами, применяют теплоаккумулятор с внешним теплообменником и загрузочным насосом.

Бивалентная схема подключения теплоаккумулятора с солнечным коллектором. Солнечный коллектор подключают к теплоаккумулятору через встроенный теплообменный аппарат в нижней части бака. При этом предполагается работа в режиме максимально возможного нагрева бака солнечной энергией а, при необходимости догрева за счёт второго источника.

В данной схеме дополнительным источником может быть газовый, твердотопливный или электрический котёл.

Подключение потребителя через теплоаккумулятор от нескольких источников тепла. К применению в современных системах нескольких источников тепла принуждает, различная стоимость единицы тепловой энергии полученная от каждого из них.

Тепло полученное от солнца имеет минимальную стоимость, но оно есть не всегда и пики его поступления, как правило, не совпадают с пиками потребления.

Тепло полученное от теплового насоса обходится несколько дороже солнечного и его можно получить всегда, но чтобы покрыть за счёт него всю тепловую мощность потребителя необходимы существенные капитальные затраты, поэтому мощность теплового насоса, обычно ниже потребной мощности системы.

Тепло полученное от газового, электрического или твердотопливного котла — самое дорогое, поэтому его используют только для догрева при недостаточной мощности первых двух источников.

Тепловой аккумулятор позволяет накопить тепловую энергию от нескольких источников и использовать её одним или несколькими потребителями. Низкотемпературные источники такие как, тепловой насос и солнечный коллектор присоединяют к нижней части бака, а высокотемпературные, такие как твердотопливный газовый или электрический котёл к верхней.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×