Stroy-m.org

Строительный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет количества секций радиаторов

Расчет количества секций радиаторов. Калькулятор.

Расчет количества секций радиаторов. Калькулятор.

Часто возникает вопрос: «Как рассчитать нужное количество секций радиатора отопления?» Вы можете воспользоваться нашим онлайн-калькулятором. Но сперва хотелось бы Вам рассказать о типах радиаторов отопления.

Кратко о существующих типах радиаторов отопления.

Современный ассортимент радиаторов, представленных в продаже, включает следующие их виды:

  • Стальные радиаторы панельной или трубчатой конструкции.
  • Чугунные батареи.
  • Алюминиевые радиаторы нескольких модификаций.
  • Биметаллические радиаторы.

Стальные радиаторы

Этот тип радиаторов не снискал себе особой популярности, несмотря на то, что некоторым моделям придается весьма элегантное дизайнерское оформление. Проблема в том, что недостатки таких приборов теплообмена существенно превышают их достоинства – невысокую цену¸ относительно небольшую массу и простоту монтажа.

Тонкие стальные стенки таких радиаторов недостаточно теплоёмки – быстро нагреваются, но и столь же стремительно остывают. Могут возникнуть проблемы и при гидравлических ударах – сварные соединения листов иногда дают при этом течь. Кроме того, недорогие модели, не имеющие специального покрытия, подвержены коррозии, и срок службы таких батарей невелик – обычно производители дают им довольно небольшую по длительности эксплуатации гарантию.

В подавляющем большинстве случаев стальные радиаторы представляют собой цельную конструкцию, и варьировать теплоотдачу изменением числа секций не позволяют. Они имеют паспортную тепловую мощность, которую сразу же нужно выбирать, исходя из площади и особенностей помещения, где они планируются к установке. Исключение – некоторые трубчатые радиаторы имеют возможность изменения количества секций, но это обычно делается под заказ, при изготовлении, а не в домашних условиях.

Чугунные радиаторы

Представители этого типа батарей наверняка знакомы каждому еще с раннего детства – именно такие гармошки устанавливались ранее буквально повсеместно.

Возможно, такие батареи МС-140—500 и не отличались особым изяществом, но зато верно служили не одному поколению жильцов. Каждая секция подобного радиатора обеспечивала теплоотдачу в 160 Вт. Радиатор сборный, и количество секций, в принципе, ничем не ограничивалось.

В настоящее время в продаже немало современных чугунных радиаторов. Их уже отличает более элегантный внешний вид, ровные гладкие наружные поверхности, которые облегчают уборку. Выпускаются и эксклюзивные варианты, с интересным рельефным рисунком чугунного литься.

При всем этом, такие модели в полной мере сохраняют основные достоинства чугунных батарей:

  • Высокая теплоемкость чугуна и массивность батарей способствуют длительному сохранению и высокой отдаче тепла.
  • Чугунные батареи, при правильной сборке и качественном уплотнении соединений, не боятся гидроударов, перепадов температур.
  • Толстые чугунные стенки мало восприимчивы к коррозии и к абразивному износу. Может использоваться практически любой теплоноситель, так что такие батареи одинаково хороши и для автономной, и для центральной систем отопления.

Если не принимать в расчёт внешние данные старых чугунных батарей, то из недостатков можно отметить хрупкость металла (недопустимы акцентированные удары), относительную сложность монтажа, связанную в больше мере с массивностью. Кроме того, далеко не любые стеновые перегородки смогут выдержать вес таких радиаторов.

Алюминиевые радиаторы

Алюминиевые радиаторы, появившись сравнительно недавно, очень быстро завоевали популярность. Они относительно недороги, имеют современный, достаточно элегантный внешний вид, обладают отменной теплоотдачей.

Качественные алюминиевые батареи способны выдерживать давление в 15 и более атмосфер, высокую температуру теплоносителя – порядка 100 градусов. При этом тепловая отдача от одной секции у некоторых моделей достигает порой 200 Вт. Но при этом они небольшой массой (вес секции – обычно до 2 кг) и не требуют большого объема теплоносителя (емкость – не более 500 мл).

Алюминиевые радиаторы представлены в продаже как наборными батареями, с возможностью изменения количества секций, так и цельными изделиями, рассчитанными на определенную мощность.

Недостатки алюминиевых радиаторов:

  • Некоторые типы весьма подвержены кислородной коррозии алюминия, с высоким риском газообразования при этом. Это предъявляет особы требования к качеству теплоносителя, поэтому такие батареи обычно устанавливают в автономных системах отопления.
  • Некоторые алюминиевые радиаторы неразборной конструкции, секции которых изготавливаются по технологии экструзии, могут при определенных неблагоприятных условиях дать течь на соединениях. При этом провести ремонт – попросту невозможно, и придется менять всю батарею в целом.

Изо всех алюминиевых батарей самые качественные – изготовленные с применением анодного оксидирования металла. Этим изделиям практически не страшна кислородная коррозия.
Внешне все алюминиевые радиаторы примерно похожи, поэтому необходимо очень внимательно читать техническую документацию, делая выбор.

Биметаллические радиаторы отопления

Подобные радиаторы по своей надежности оспаривают первенство с чугунными, а по тепловой отдаче – с алюминиевыми. Причина тому заключается в их особой конструкции.

Каждая из секций состоит из двух, верхнего и нижнего, стальных горизонтальных коллекторов (поз. 1), соединенных таким же стальным вертикальным каналом (поз.2). Соединение в единую батарею производится высококачественными резьбовыми муфтами (поз. 3). Высокая теплоотдача обеспечивается наружной алюминиевой оболочкой.

Стальные внутренние трубы выполнены из металла, которые не подвержен коррозии или имеет защитное полимерное покрытие. Ну а алюминиевый теплообменник ни при каких обстоятельствах не контактирует с теплоносителем, и коррозия ему абсолютно не страшна.

Таким образом, получается сочетание высокой прочности и износоустойчивости с отличными теплотехническими показателями.

Такие батареи не боятся даже очень больших скачков давления, высоких температур. Они, по сути, универсальны, и подходят для любых систем отопления, правда, наилучшие эксплуатационные характеристики они все же показывают в условиях высокого давления центральной системы – для контуров с естественной циркуляцией они малопригодны.

Пожалуй, единственных их недостаток – высокая цена по сравнению с любыми другими радиаторами.

Расчет мощности алюминиевых и биметаллических радиаторов

Существует множество способов и методик расчета мощности алюминиевых и биметаллических радиаторов . самый простой способ рассчитывает мощность, исходя из объема. Для средней полосы России предполагается достаточным 30-40 Ватт на кубический метр помещения. При расчете следует учитывать ряд дополнительных факторов:

  • Количество внешних (холодных) стен помещения
  • Способ подключения радиаторов
  • Количество и размер окон
  • Широту местности, на севере нужно больше тепла для обогрева
  • Мощность каждой секции выбранной модели радиаторов
  • Качество утепления стен
  • Размер подоконника над радиатором

Это так же согласуется с расчетом мощности радиаторов отопления, исходя из площади помещений. Стандартной высотой потолка в большинстве современных построек является 2,5 метра. На один квадратный метр, при расчете, исходя из площади, рекомендуют 100 Ватт тепла. Таким образом, на 2,5 кубических метра должно приходиться 100 Ватт. Разделив 100 Ватт на 2,5 кубических метра, получаем цифру в 40 Ватт на кубический метр.

Однако высота потолков не всегда составляет 2,5 метра. Она может быть 2,5 метра, 3 метра, 3,5 метра, 4 метра. Данные цифры, 40 Ватт на кубический метр помещения, позволяют нам рассчитывать необходимую мощность радиаторов, количество радиаторов и количество секций каждого из устанавливаемых радиаторов.

Необходимые данные для расчета мощности радиаторов отопления могут быть упорядочены в таблице:

Высота потолкаРасчет мощности радиаторов на квадратный метр площади, исходя из 40 Ватт на кубический метр
2,5100
2,7108
3120
3,5140
4160

При возникновении сомнений, выбор делается в сторону большей мощности. К тому же необходимо учитывать, что температура зимой меняется в очень широких пределах. Бывают сильные холода, поэтому расчет мощности радиаторов следует проводить, исходя из того, что Вы будете жить в квартире даже в сильные морозы. Лучше установить радиаторы большей мощности, а убавить мощность отопления всегда возможно с помощью регулировки.

Общее количество секций алюминиевых и биметаллических радиаторов рассчитывается, исходя из технического паспорта каждой конкретной модели. Усреднено можно считать, что мощность одной секции секционного чугунного,биметаллического или алюминиевого с межосевым расстоянием 500 мм составляет 150 ватт. То есть на каждый 1,5 квадратный метр должна приходиться одна секция при высоте потолков 2,5 метра.

Следует заметить,что очень часто недобросовестные производители дешевых алюминиевых и биметаллических радиаторов завышают реальную теплоотдачу,указывая теплоотдачу радиатора при ΔT = 70°С (ΔT = (Твх + Твых)/2 — Ткомн) т.е при температуре теплоносителя 90-100 градусов и температуре в комнате всего 20 градусов.

В последние время в Самаре температура теплоносителя колеблется в границах 60-70 градусов т.е почти в 1.5 раза ниже нормативной и соответственно далеко не каждый радиатор в состоянии обеспечить необходимую мощность теплоотдачи.

Поэтому если Вы любите тепло — покупайте радиатор отопления с запасом и отдавайте предпочтение радиаторам RADENA,TENRAD или FONDITAL

Как рассчитать количество секций радиатора

При модернизации системы отопления кроме замены труб меняют и радиаторы. Причем сегодня они есть из разных материалов, разных форм и размеров. Что не менее важно, имеют они разную теплоотдачу: количество тепла, которые могут передать воздуху. И это обязательно учитывают, когда делают расчет секций радиаторов.

Читать еще:  Как установить полотенцесушитель в ванной самостоятельно

В помещении будет тепло, если количество тепла, которое уходит, будет компенсироваться. Поэтому в расчетах за основу берут теплопотери помещений (они зависят от климатической зоны, от материала стен, утепления, площади окон и т.д.). Второй параметр — тепловая мощность одной секции. Это то количество тепла, которое она может выдать при максимальных параметрах системы (90°C на входе и 70°C на выходе). Эта характеристика обязательно указывается в паспорте, зачастую присутствует на упаковке.

Делаем расчет количества секций радиаторов отопления своими руками, учитываем особенности помещений и системы отопления

Один важный момент: проводя расчеты самостоятельно, учтите, что большинство производителей указывают максимальную цифру, которую они получили при идеальных условиях. Потому любое округление производите в большую сторону. В случае с низкотемпературным отоплением (температура теплоносителя на входе ниже 85°C) ищут тепловую мощность для соответствующих параметров или делают перерасчет (описан ниже).

Расчет по площади

Это — самая простая методика, позволяющая примерно оценить число секций, необходимое для отопления помещения. На основании многих расчетов выведены нормы по средней мощности отопления одного квадрата площади. Чтобы учесть климатические особенности региона, в СНиПе прописали две нормы:

  • для регионов средней полосы России необходимо от 60 Вт до 100 Вт;
  • для районов, находящихся выше 60°, норма отопления на один квадратный метр 150-200 Вт.

Почему в нормах дан такой большой диапазон? Для того, чтобы можно было учесть материалы стен и степень утепления. Для домов из бетона берут максимальные значения, для кирпичных можно использовать средние. Для утепленных домов — минимальные. Еще одна важная деталь: эти нормы просчитаны для средней высоты потолка — не выше 2,7 метра.

Как рассчитать количество секций радиатора: формула

Зная площадь помещения, умножаете ее норму затрат тепла, наиболее подходящую для ваших условий. Получаете общие теплопотери помещения. В технических данных к выбранной модели радиатора, находите тепловую мощность одной секции. Общие теплопотери делите на мощность, получаете их количество. Несложно, но чтобы было понятнее, приведем пример.

Пример расчета количества секций радиаторов по площади помещения

Угловое помещение 16 м 2 , в средней полосе, в кирпичном доме. Устанавливать будут батареи с тепловой мощностью 140 Вт.

Для кирпичного дома берем теплопотери в середине диапазона. Так как помещение угловое, лучше взять большее значение. Пусть это будет 95 Вт. Тогда получается, что для обогрева помещения требуется 16 м 2 * 95 Вт = 1520 Вт.

Теперь считаем количество радиаторов для отопления этой комнаты: 1520 Вт / 140 Вт = 10,86 шт. Округляем, получается 11 шт. Столько секций радиаторов необходимо будет установить.

Расчет батарей отопления на площадь прост, но далеко не идеален: высота потолков не учитывается совершенно. При нестандартной высоте используют другую методику: по объему.

Считаем батареи по объему

Есть в СНиПе нормы и для обогрева одного кубометра помещений. Они даны для разных типов зданий:

  • для кирпичных на 1 м 3 требуется 34 Вт тепла;
  • для панельных — 41 Вт

Этот расчет секций радиаторов похож на предыдущий, только теперь нужна не площадь, а объем и нормы берем другие. Объем умножаем на норму, полученную цифру делим на мощность одной секции радиатора (алюминиевого, биметаллического или чугунного).

Формула расчета количества секций по объему

Пример расчета по объему

Для примера рассчитаем, сколько нужно секций в комнату площадью 16 м 2 и высотой потолка 3 метра. Здание построено из кирпича. Радиаторы возьмем той же мощности: 140 Вт:

  • Находим объем. 16 м 2 * 3 м = 48 м 3
  • Считаем необходимое количество тепла (норма для кирпичных зданий 34 Вт). 48 м 3 * 34 Вт = 1632 Вт.
  • Определяем, сколько нужно секций. 1632 Вт / 140 Вт = 11,66 шт. Округляем, получаем 12 шт.

Теперь вы знаете два способа того, как рассчитать количество радиаторов на комнату.

Теплоотдача одной секции

Сегодня ассортимент радиаторов большой. При внешней схожести большинства, тепловые показатели могут значительно отличаться. Они зависят от материала, из которого изготовлены, от размеров, толщины стенок, внутреннего сечения и от того, насколько хорошо продумана конструкция.

Потому точно сказать, сколько кВт в 1 секции алюминиевого (чугунного биметаллического) радиатора, можно сказать только применительно к каждой модели. Эти данные указывает производитель. Ведь есть значительная разница в размерах: одни из них высокие и узкие, другие — низкие и глубокие. Мощность секции одной высоты того же производителя, но разных моделей, могут отличаться на 15-25 Вт (смотрите в таблице ниже STYLE 500 и STYLE PLUS 500) . Еще более ощутимые отличия могут быть у разных производителей.

Технические характеристики некоторых биметаллических радиаторов. Обратите внимание, что тепловая мощность одинаковых по высоте секций может иметь ощутимую разницу

Тем не менее, для предварительной оценки того, сколько секций батарей нужно для отопления помещений, вывели средние значения тепловой мощности по каждому типу радиаторов. Их можно использовать при приблизительных расчетах (приведены данные для батарей с межосевым расстоянием 50 см):

  • Биметаллический — одна секция выделяет 185 Вт (0,185 кВт).
  • Алюминиевый — 190 Вт (0,19 кВт).
  • Чугунные — 120 Вт (0,120 кВт).

Точнее сколько кВт в одной секции радиатора биметаллического, алюминиевого или чугунного вы сможете, когда выберете модель и определитесь с габаритами. Очень большой может быть разница в чугунных батареях. Они есть с тонкими или толстыми стенками, из-за чего существенно изменяется их тепловая мощность. Выше приведены средние значения для батарей привычной формы (гармошка) и близких к ней. У радиаторов в стиле «ретро» тепловая мощность ниже в разы.

Это технические характеристики чугунных радиаторов турецкой фирмы Demir Dokum. Разница более чем солидная. Она может быть еще больше

Исходя из этих значений и средних норм в СНиПе вывели среднее количество секций радиатора на 1 м 2 :

  • биметаллическая секция обогреет 1,8 м 2 ;
  • алюминиевая — 1,9-2,0 м 2 ;
  • чугунная — 1,4-1,5 м 2 ;

Как рассчитать количество секций радиатора по этим данным? Все еще проще. Если вы знаете площадь комнаты, делите ее на коэффициент. Например, комната 16 м 2 , для ее отопления примерно понадобится:

  • биметаллических 16 м 2 / 1,8 м 2 = 8,88 шт, округляем — 9 шт.
  • алюминиевых 16 м 2 / 2 м 2 = 8 шт.
  • чугунных 16 м 2 / 1,4 м 2 = 11,4 шт, округляем — 12 шт.

Эти расчеты только примерные. По ним вы сможете примерно оценить затраты на приобретение отопительных приборов. Точно рассчитать количество радиаторов на комнату вы сможете выбрав модель, а потом еще пересчитав количество в зависимости от того, какая температура теплоносителя в вашей системе.

Расчет секций радиаторов в зависимости от реальных условий

Еще раз обращаем ваше внимание на то, что тепловая мощность одной секции батареи указывается для идеальных условий. Столько тепла выдаст батарея, если на входе ее теплоноситель имеет температуру +90°C, на выходе +70°C, в помещении при этом поддерживается +20°C. То есть, температурный напор системы (называют еще «дельта системы») будет 70°C. Что делать, если в вашей системе выше +70°C на входе на бывает? или необходима температура в помещении +23°C? Пересчитывать заявленную мощность.

Для этого необходимо рассчитать температурный напор вашей системы отопления. Например, на подаче у вас +70°C, на выходе +60°C, а в помещении вам необходима температура +23°C. Находим дельту вашей системы: это среднее арифметическое температур на входе и выходе, за минусом температуры в помещении.

Формула расчета температурного напора системы отопления

Для нашего случая получается: (70°C+ 60°C)/2 — 23°C = 42°C. Дельта для таких условий 42°C. Далее находим это значение в таблице пересчета (расположена ниже) и заявленную мощность умножаем на этот коэффициент. Поучаем мощность, которую сможет выдать эта секция для ваших условий.

Таблица коэффициентов для систем отопления с разной дельтой температур

При пересчете действуем в следующем порядке. Находим в столбцах, подкрашенных синим цветом, строчку с дельтой 42°C. Ей соответствует коэффициент 0,51. Теперь рассчитываем, тепловую мощность 1 секции радиатора для нашего случая. Например, заявленная мощность 185 Вт, применив найденный коэффициент, получаем: 185 Вт * 0,51 = 94,35 Вт. Почти в два раза меньше. Вот эту мощность и нужно подставлять когда делаете расчет секций радиаторов. Только с учетом индивидуальных параметров в помещении будет тепло.

Как уплотнять соединения в трубопроводах отопления и водоснабжения

В продаже можно встретить много различных материалов, которые предназначены для уплотнения стыков трубопроводов. Возникает вопрос, — какой из материалов в каких случаях должен применяться? А также, — как правильно использовать тот или иной уплотнитель?

Читать еще:  Установка насоса в систему отопления частного дома

Часто имеется возможность применить сразу два или несколько уплотнителей для резьбы, тогда требуется уточнение — что предпочесть. Приведенные рекомендации должны помочь разобраться в этих вопросах, и найти решение, которое обеспечит достаточную надежность соединения труб и фитингов на резьбе на весь период эксплуатации.

Льняная подмотка

Лен — дешевый материал для резьбовых стыков, создающий весьма качественное уплотнение. Единственное, — не во всех случаях его можно применять.

Он предназначен для соединений металлических деталей, так как создает значительную плотность. Он весьма прочный, усилия, прилагаемые ключами, к двум соединяемым деталям, требуются значительные.

Поэтому льном не уплотняются:

  • пластмассовые детали – момент затяжки превышает крепость материала, детали будут смяты, разрушены, по крайней мере, резьба.
  • детали, в которых металлическая муфта с резьбой заделана в пластмассовую (полипропиленовую) оболочку, ввиду опасности проворота (расстыковки).

Для всех металлических изделий лен является материалом №1 для подмотки резьбовых стыков.

Дальше рассмотрим, как его правильно применить.

Лен «на сухую» не применяется, его необходимо смазывать специальной сантехнической пастой. Она наносится либо непосредственно на резьбу, либо на намотанный лен.

Народный опыт также подсказывает, – вместо пасты можно применить подсолнечное масло, качество стыковки при этом не уменьшается, по крайней мере таких сведений нет.

Из льна выделяется прядь и накручивается по резьбе по каждому ручью. Намотка выполняется плотно и аккуратно. Торчащих волосков не должно быть. Первые два витка не заполняются, а в конце резьбы делается буртик.

Специальная сантехническая нить

Особая нитка для уплотнений, высокой прочности (нельзя порвать руками) намотанная на катушки, продается в магазинах. Ее главный недостаток – высокая цена, в остальном у нее сплошные достоинства.

  • Она может применяться на любых деталях, момент затяжки, по сравнению с льном меньше, поэтому можно подматывать и пластик.
  • Она весьма качественно уплотняет и может применяться даже на рваной резьбе.

Если бы не стоимость этого материала, то для стыков применялась бы только такая сантехническая нить.

Подмотка выполняется точно также, как и льном – два первых витка резьбы остаются пустыми, чтобы детали можно было стыковать, а затем ведется намотка по каждому ручью резьбы, в конце накрутки – двойной слой, т.е. буртик.

Фум-лента

Фум-лента мало подходит для создания надежных соединений на трубопроводах. Материал весьма не прочный, достаточной плотности в резьбовом соединении металлических изделий с ним не возникает. Но для пластиковых соединений, которые будут демонтироваться, например летний трубопровод для полива, фум-лента – самый подходящий уплотнитель.

С фум-лентой соединяемые детали можно завернуть усилием руки. При этом возникает небольшая плотность стыка по резьбе, чтобы некоторое время протечек не возникало. Незначительное усилие при закручивании не обеспечивает достаточной плотности, не дает гарантии, что данный стык не даст течь. Для стационарных соединений, особенно если они будут малодоступны в процессе эксплуатации, рекомендуется использовать другие материалы.

Отопление в доме может быть сделано самостоятельно — главные вопросы монтажа

Если произойдет проворот соединения с фум-лентой, которое уже находится в работе, то, скорее всего, возникнет течь. Это серьезный недостаток, учитывая, что для вращение не нужны большие усилия.

На бытовом уровне фум-лента может использоваться, (и популярна ввиду дешевизны, удобства пользования, и малых усилий), для соединений которые находятся на виду – при подключении душевых, кранов, и т.п.
Какую схему отопления лучше всего применить в частном доме

Сантехнический клей герметик для резьбовых соединений

Материал специальный, не совсем дешевый, уплотняет хорошо, случаи протечки, после его правильного применения не зафиксированы. Но только после неправильного….

Очевидным недостатком клея герметика является то, что качество стыка будет зависеть от «человеческого фактора» больше, чем при подмотках. Дело в том, что на жирных поверхностях клей нормально не работает.

Откуда возьмутся жирные поверхности? Это может быть просто неаккуратность, — капнули маслом на резьбу или руками в масле протерли деталь. Детали могут храниться в смазанном состоянии (касается в первую очередь стальных). Но главное – при нарезке резьбы применяется смазка. Вот после такой операции на стальных деталях клей герметик совершенно не подходит.

Нужно обратить внимание, что есть образцы клея, с которыми расстыковка труб требует нагревания более 100 градусов. Такой нагрев часто сложен, не безопасен, пластик может повреждаться, и т.д. Поэтому клей-герметик еще подбирается по обстоятельствам.

Применяется клей просто. Наносится только непосредственно перед стыковкой, выдавливается из тюбика на резьбу и размазывается пальцем по всей резьбе без пропусков.


В каких случаях стоит отдать предпочтение клею?

  • При соединении пластиковых деталей с металлическими, клей окажется предпочтительней. Но такое соединение встречается не часто.
  • Второй случай, — когда доступ к месту стыковки будет затруднен. Такое соединение лучше посадить на клей, причем смазка выполняется обильно без экономии, на обеих стыкуемых деталях.

Особенности намотки

Намотка на резьбу требует большой аккуратности исполнения. Резьба должна заполняться ровным слоем без пропусков, в каждом ручье должен находиться уплотняющий материал. Он укладывается до конца резьбы, где из него формируется буртик.

Основное уплотнение резьбовых соединений возникает на последних двух витках резьбы. На деталях, чаще, последние два витка резьбы не прорезаны на всю глубину. Поэтому, в этом месте материал расклинивается между двумя деталями весьма плотно.

Неплохо, если при выполнении работ организовать дополнительный (перекрестный) контроль качества выполнения подмотки льном. Это особенно актуально, когда выполняется сразу несколько десятков подобных соединений.

Выводы

  • Для тех, кто постоянно занимается монтажем, рекомендуется всегда иметь при себе лен, сантехническую нить и клей-герметик, чтобы оперативно и качественно выполнить любое соединение. Применять все это рекомендуется в соответствии с приведенными выше советами.
  • При выполнении работ дома своими руками, когда делается что-то простое и находящееся на виду, можно воспользоваться дешевой фум-лентой, но нужно мотать побольше. При монтаже целых систем своими руками, на металле лучше использовать лен (с постным маслом), а при небольших объемах работ еще лучше использовать нить. Следует уделять максимум внимания качеству намотки на резьбу.

Что никогда не нужно применять для уплотнения резьбовых соединений:

  • Не нужно применять простой силикон, он предназначен для фланцевых соединений.
  • Не нужно применять краски, белила, сурик, которые толка дают чуть, но зато делают соединения полуразборными – это давно устарело.

Как выбрать нужный материал для герметизации соединения

Каждый из нас сталкивался с необходимостью заменить кран, поставить новый полотенцесушитель в ванной или новый радиатор отопления. Хорошо, если это сделает за вас мастер, но тем кому хочется разбираться во всем самому мы предлагаем ознакомиться со способами герметизации резьбовых соединений которые наиболее часто применяются на сегодняшний день.

Льняные волокна с масляной краской до сих пор очень распространенный способ в нашей стране. Практически только последние десять-пятнадцать лет стали применяться более технологичные и современные методы герметизации резьб в водопроводах. А применение льняных волокон с суриком и олифой вообще было неотъемлемой частью монтажа водопроводов, систем отопления и газопроводов, поскольку так указано в СниП для сантехнических систем и для газоснабжения. Этот метод со временем вызывает значительную коррозию резьбы и невозможность без повреждений разобрать соединение (часто необходим подогрев фитингов до температуры выгорания льна), а большие усилия затяжки фитингов при сборке опасность разрушения деталей.
Правда низкая стоимость, доступность используемых материалов для уплотнения и привычка вынуждает некоторых сантехников пользоваться именно этим методом.

. Если хотите, чтобы все соединения в будущем можно было аккуратно разобрать и заменить надоевший или испортившийся смеситель, радиатор и т. д. просите при установке применять более современные и надежные способы.

Уплотнительные пасты со льном являются самым удобным и несложным методом герметизации резьбовых соединений при невысокой стоимости расходных материалов. Пасты представляют собой вязкий продукт, на основе синтетических смол, масел, парафинов, графита и наполнителей, а в сочетании со льном обеспечивают надежное соединение. Предотвращают «выгорание» льна в трубопроводах с горячей водой. Защищают соединение от коррозии. Не оказывают влияния на качество воды и пригодны к применению в системах с питьевой водой. При монтаже дают возможность немного ослабить соединение без потери герметичности, в отличии например от ФУМ-лент. Ограничением в применении таких паст являются температура: не более +140° С и давление 8 бар. Есть также пасты для герметизации соединений в газопроводах (газовые колонки).

. Если захотите в дальнейшем разобрать такое соединение и заменить, к примеру, смеситель это будет очень легко сделать, а главное резьба на трубе будет как новая, что позволит обойтись без замены или ремонта самих труб.

Читать еще:  Шумит и гудит котел? Расскажем, как это исправить!

. Будьте осторожны! Не все пасты одинаково хороши, доверяйте производителю с многолетним опытом в производстве и никогда не покупайте сомнительные подделки! Такая экономия может в итоге дорого обойтись.

Лен с силиконовым герметиком вообще нельзя применять в соединениях с питьевой водой! Такое соединение не защищает детали и фитинги от коррозии и не способно выдерживать перепады температур и высокое давление. Этот метод применяют скорее от незнания, чем и как правильно герметизировать резьбовые соединения.

. Если вам предложат герметизацию таким способом задумайтесь о квалификации такого мастера.

Лента Ф.У.М. — лента из политетрафторэтиленовой пленки. Широко распространена из-за доступности и дешевизны. Является наиболее гигиеничным способом герметизации соединений наряду с тефлоновой нитью. Может применяться в больницах, учреждениях пищевой промышленности и там где предъявляются повышенные требования к гигиене. Абсолютно безопасна для питьевой воды. Не разрушается под воздействием многих кислот, газов, устойчива к кислороду. К сожалению имеет и недостатки. Неудовлетворительная надежность герметизации соединений (при перепадах температур и вибрации возможно «выскальзывание» ленты из зазоров резьбы) и плохое уплотнение фитингов с некачественной поверхностью резьбы и труб больших диаметров. Лента не обеспечивает защиту соединения от коррозии.

. Возможно использование при определенных гигиенических требованиях. Не пачкает руки при работе. Отличная химическая стойкость. Подходит только для труб и соединений с новой качественной резьбой.

. Производители дешевых лент (в основном из Китая) нередко обманывают своих покупателей меньшей намоткой и толщиной ленты (чем указано на упаковке).

Нить для уплотнений из тефлона (с контейнером со смазкой) или нейлоновый шнур, пропитанный специальным смазывающим составом. Как и ФУМ-ленты наиболее гигиеничный метод в герметизации резьбовых соединений. Абсолютно безопасна для питьевой воды. Не разрушается под воздействием многих кислот, газов, устойчива к кислороду. Подходит для уплотнения трубопроводов любых размеров, а диапазон рабочих температур от -200° С до +240° С.

. Необходимо сделать насечки на очень гладкой резьбе. Нить можно использовать на мокрой резьбе или при низкой температуре воздуха.

Анаэробные клеи – герметики это составы различной вязкости, способные длительное время оставаться на воздухе не теряя своих свойств, а попадая в соединения между металлическими поверхностями под влиянием свободных ионов металла, быстро полимеризироваться образуя прочную пластмассу, заполняющую резьбовой зазор.

Клей можно наносить только на сухую хорошо очищенную, обезжиренную резьбу. Некоторые составы выдерживают температуру до +230° С и давление вплоть до разрыва трубы. Неудобным является демонтаж соединения, необходимо приложить немало усилий чтобы «сорвать» такое соединение, иногда это невозможно сделать без нагревания строительным феном.

Еще одним неприятным моментом можно признать невозможность использовать соединение сразу после сборки (клей застывает в соединении 3-6 часов, с использованием активатора в два-три раза быстрее).

Соединения остаются герметичными при сильных вибрациях, колебаниях давления и температуры, что делает целесообразным их применение в гидро- и пневмо- насосах и т.п.
Стоимость анаэробных клеев-герметиков может превышать стоимость других уплотнителей, но качество соединений всегда на высоком уровне.

. Применение анаэробных герметиков на хромированных и соединениях из нержавеющей стали возможно только с использованием специального активатора.

Итак, если вы все еще сомневаетесь каким способом уплотнить резьбовое соединение при замене смесителя или других приборов связанных с трубопроводом в вашем доме используйте уплотнительную пасту со льном, получившееся недорогое и качественное соединение сразу будет готово к использованию. А через несколько лет порадует возможностью легкого демонтажа и сохранения самого соединения без ржавчины в трубопроводах с горячей и холодной водой.

Способы уплотнения резьбы

Всем привет! Самостоятельная установка сантехники, прокладка трубопроводов, систем отопления и водоснабжения связана с монтажом резьбовых соединений. А чтобы исключить протечки, требуется качественно уплотнить резьбу, используя подходящий материал, вот именно в материалах я и предлагаю разобраться далее и выяснить, какой из них подходит для этих целей лучше всего.

Основные способы уплотнения

Обычно, для уплотнения трубной резьбы используют следующие материалы:

  • Лён и краску или уплотняющую пасту;
  • ФУМ-ленту;
  • фторопластовую или полиамидную нить;
  • пасту (высыхающую или невысыхающую);
  • анаэробный герметик.

Уплотнение резьбы в сантехнике раньше традиционно выполнялось при помощи льняного волокна с суриком, но сегодня этот способ применяется все реже, поскольку искусственные материалы значительно проще и удобнее в использовании.

Плюсы и минусы материалов

Лен и паста. К преимуществам этих материалов можно отнести долговечность и герметичность соединения, если оно выполнено правильно. Уплотнение резьбы льном используется при монтаже водопроводных и отопительных систем, при этом максимально допустимая температура рабочей среды не должна превышать 90°, иначе уплотнитель начнет разрушаться.

В число недостатков входит сложность монтажных работ – требуется навык, чтобы качественно уплотнять соединения льняным волокном. Также следует отметить, что при затяжке и при демонтаже такого соединения требуются серьезные физические усилия, что может повредить соединительным элементам.

Льняное волокно не подходит для уплотнения резьбовых фитингов из полимерных материалов – при намокании натуральный материал расширяется, в результате чего пластиковый элемент может лопнуть. Уплотнение льном не рекомендуется применять и при монтаже отопительной системы, если в качестве теплоносителя планируется использовать незамерзающую жидкость.

ФУМ-лента. Фторопластовый уплотнительный материал (ФУМ), который выпускается в виде ленты, сохраняет свои эксплуатационные свойства при температуре от -200°С до +240°С и давлении до 30 атм, что позволяет использовать материал для монтажа водопроводных и отопительных систем без ограничений. Уплотнение лентой подходит для систем отопления с антифризом. Материал защищает металл резьбы от коррозии, за счет гладкости ленты соединение легко монтируется и демонтируется.

Недостатком материала является та же гладкость ленты – под воздействием вибрационных и механических нагрузок соединения ослабевают и могут начать протекать. ФУМ-лента не подходит для монтажа с позиционированием, особенно, если речь идет о вентилях и кранах.

Уплотнительные нити. Так – же для герметизации резьбовых соединений используются полиамидные и фторпопластовые нити, снабженные специальной смазкой, которая упрощает монтаж и демонтаж, а также препятствует протеканию стыков. Фторопластовая нить по характеристикам и сфере применения совпадает с ФУМ-лентой. Уплотнение резьбы нитью из полиамида применяется в трубопроводах с температурой среды до 130°С и давлением до 16 атм.

Сантехнические нити обладают всеми плюсами льняного уплотнителя, но при этом значительно проще в монтаже, не гниют, не разрушаются от температурного воздействия, защищают металл от коррозии. Единственным недостатком материала является его высокая стоимость.

Paste a VALID AdSense code in Ads Elite Plugin options before activating it.

Невысыхающие пасты — изготавливаются на основе синтетических смол с маслами и наполнителем. Преимуществом является простота использования – для уплотнения стыка достаточно смазать резьбу обоих соединяемых элементов. Невысыхающая паста герметизирует стык и защищает резьбовое соединение от коррозии, позволяет легко демонтировать узел.

К недостаткам можно отнести узкую сферу применения – невысыхающий состав подходит только для безнапорных или низконапорных систем, так как под давлением его выдавит наружу. Уплотнитель разрушается под воздействием агрессивных сред, поэтому его нельзя использовать для систем отопления с антифризом.

Высыхающие пасты. Герметики на растворителях подходят для использования в системах, работающих под давлением. Для уплотнения резьбы состав наносится на обе соединяемые части, причем детали следует сразу же соединить, чтобы герметик не успел схватиться. Высыхающая паста качественно герметизирует резьбу.

Уплотнение пастой данного типа подходит только для монтажа соединений с небольшим зазором, иначе при высыхании материал даст сильную усадку и резьбовое соединение будет подтекать.

Анаэробный герметик. Практически жидкий состав максимально прост в применении – его наносят на резьбу и закручивают элементы.

Анаэробные герметики подразделяются на несколько типов в зависимости от условий применения, поэтому при выборе следует обратить внимание на следующие параметры:

  • диапазон рабочих температур;
  • диаметр резьбы, на который рассчитан данный тип уплотнителя;
  • усилие, требующееся для разборки;
  • время полимеризации.

Важно знать, что перед уплотнением анаэробным герметиком резьбовое соединение требуется обезжирить и просушить. Уплотнитель подходит для водопроводных и отопительных систем, в том числе с незамерзающей жидкостью.

Заключение

Выбирая, чем уплотнить резьбу, обратите внимание на условия эксплуатации конкретного соединения (давление, температурный режим, агрессивность транспортируемой среды и т.д.), на особенности монтажа уплотнителя и его стоимость. При необходимости полностью смонтировать инженерные коммуникации в доме, рекомендуется выбрать анаэробный герметик, как самый надежный вариант из существующих.

Видео по теме «способы уплотнения резьбы»:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector